Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.115
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38630557

RESUMO

OBJECTIVE: TNFAIP8 and TIPE2 belong to TNFa-induced protein 8 (TNFAIP8/TIPE) family. They control apoptosis and direct leukocyte migration. Nucleus pulposus (NP) cell loss is a hallmark of intervertebral disc (IVD) degeneration in response to injury, and inflammation may cause pain. Here, we examined the effects of TNFAIP8/TIPE2 deficiency on the IVDs in mice with these genes deleted. DESIGN: Tail IVDs in Tnfaip8 or Tipe2 single and double knockout mice (Tnfaip8-/-, Tipe2-/-, and Tnfaip8/Tipe2 dko), and wild type (WT) controls were injured. The spine motion segments were stained with Safranin O to reveal proteoglycans. Macrophages were identified by immunostaining, and selected inflammatory marker and collagen gene expression was examined by Real Time PCR. RESULTS: The injured tail IVDs of Tnfaip-/-, Tipe2-/-, and Tnfaip8/Tipe2 dko mice all displayed higher levels of proteoglycans than WT controls. Fewer macrophages were found in the injured IVDs of Tipe2-/- and Tnfaip8/Tipe2 dko mice than WT. Il6, Adam8 and Col1 gene expression was downregulated in the injured IVDs of Tnfip8/Tipe2 dko mice. CONCLUSIONS: TNFAIP8 and TIPE2 loss of function ameliorated proteoglycan loss and inflammation in the injured IVDs. They may serve as molecular targets to preserve disc structure and reduce inflammation.

2.
Food Chem X ; 22: 101300, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38571574

RESUMO

The composition of volatile compounds in beer is crucial to the quality of beer. Herein, we identified 23 volatile compounds, namely, 12 esters, 4 alcohols, 5 acids, and 2 phenols, in nine different beer types using GC-MS. By performing PCA of the data of the flavor compounds, the different beer types were well discriminated. Ethyl caproate, ethyl caprylate, and phenylethyl alcohol were identified as the crucial volatile compounds to discriminate different beers. PLS regression analysis was performed to model and predict the contents of six crucial volatile compounds in the beer samples based on the characteristic wavelength of the FTIR spectrum. The R2 value of each sample in the prediction model was 0.9398-0.9994, and RMSEP was 0.0122-0.7011. The method proposed in this paper has been applied to determine flavor compounds in beer samples with good consistency compared with GC-MS.

3.
Med Phys ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558279

RESUMO

BACKGROUND: Cushing's Disease (CD) is a rare clinical syndrome characterized by excessive secretion of adrenocorticotrophic hormone, leading to significant functional and structural brain alterations as observed in Magnetic Resonance Imaging (MRI). While traditional statistical analysis has been widely employed to investigate these MRI changes in CD, it has lacked the ability to predict individual-level outcomes. PURPOSE: To address this problem, this paper has proposed an interpretable machine learning (ML) framework, including model-level assessment, feature-level assessment, and biology-level assessment to ensure a comprehensive analysis based on structural MRI of CD. METHODS: The ML framework has effectively identified the changes in brain regions in the stage of model-level assessment, verified the effectiveness of these altered brain regions to predict CD from normal controls in the stage of feature-level assessment, and carried out a correlation analysis between altered brain regions and clinical symptoms in the stage of biology-level assessment. RESULTS: The experimental results of this study have demonstrated that the Insula, Fusiform gyrus, Superior frontal gyrus, Precuneus, and the opercular portion of the Inferior frontal gyrus of CD showed significant alterations in brain regions. Furthermore, our study has revealed significant correlations between clinical symptoms and the frontotemporal lobes, insulin, and olfactory cortex, which also have been confirmed by previous studies. CONCLUSIONS: The ML framework proposed in this study exhibits exceptional potential in uncovering the intricate pathophysiological mechanisms underlying CD, with potential applicability in diagnosing other diseases.

4.
ACS Cent Sci ; 10(3): 628-636, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559293

RESUMO

Angelica sinensis, commonly known as Dong Quai in Europe and America and as Dang-gui in China, is a medicinal plant widely utilized for the prevention and treatment of osteoporosis. In this study, we report the discovery of a new category of phthalide from Angelica sinensis, namely falcarinphthalides A and B (1 and 2), which contains two fragments, (3R,8S)-falcarindiol (3) and (Z)-ligustilide (4). Falcarinphthalides A and B (1 and 2) represent two unprecedented carbon skeletons of phthalide in natural products, and their antiosteoporotic activities were evaluated. The structures of 1 and 2, including their absolute configurations, were established using extensive analysis of NMR spectra, chemical derivatization, and ECD/VCD calculations. Based on LC-HR-ESI-MS analysis and DFT calculations, a production mechanism for 1 and 2 involving enzyme-catalyzed Diels-Alder/retro-Diels-Alder reactions was proposed. Falcarinphthalide A (1), the most promising lead compound, exhibits potent in vitro antiosteoporotic activity by inhibiting NF-κB and c-Fos signaling-mediated osteoclastogenesis. Moreover, the bioinspired gram-scale total synthesis of 1, guided by intensive DFT study, has paved the way for further biological investigation. The discovery and gram-scale total synthesis of falcarinphthalide A (1) provide a compelling lead compound and a novel molecular scaffold for treating osteoporosis and other metabolic bone diseases.

5.
BMC Cancer ; 24(1): 409, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566057

RESUMO

BACKGROUND: Accurate evaluation of axillary lymph node metastasis (LNM) in breast cancer is very important. A large number of hyperplastic and dilated lymphangiogenesis cases can usually be found in the pericancerous tissue of breast cancer to promote the occurrence of tumor metastasis.Shear wave elastography (SWE) can be used as an important means for evaluating pericancerous stiffness. We determined the stiffness of the pericancerous by SWE to diagnose LNM and lymphangiogenesis in invasive breast cancer (IBC). METHODS: Patients with clinical T1-T2 stage IBC who received surgical treatment in our hospital from June 2020 to December 2020 were retrospectively enrolled. A total of 299 patients were eventually included in the preliminary study, which included an investigation of clinicopathological features, ultrasonic characteristics, and SWE parameters. Multivariable logistic regression analysis was used to establish diagnostic model and evaluated its diagnostic performance of LNM. The correlation among SWE values, collagen volume fraction (CVF), and microlymphatic density (MLD) in primary breast cancer lesions was analyzed in another 97 patients. RESULTS: The logistic regression model is Logit(P)=-1.878 + 0.992*LVI-2.010*posterior feature enhancement + 1.230*posterior feature shadowing + 0.102*posterior feature combined pattern + 0.009*Emax. The optimum cutoff value of the logistic regression model was 0.365, and the AUC (95% CI) was 0.697 (0.636-0.758); the sensitivity (70.7 vs. 54.3), positive predictive value (PPV) (54.0 vs. 50.8), negative predictive value (NPV) (76.9 vs. 69.7), and accuracy (65.2 vs. 61.9) were all higher than Emax. There was no correlation between the SWE parameters and MLD in primary breast cancer lesions. CONCLUSIONS: The logistic regression model can help us to determine LNM, thus providing more imaging basis for the selection of preoperative treatment. The SWE parameter of the primary breast cancer lesion cannot reflect the peritumoral lymphangiogenesis, and we still need to find a new ultrasonic imaging method.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Linfangiogênese , Metástase Linfática/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Estudos Retrospectivos
6.
Int J Biol Macromol ; 267(Pt 1): 131214, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580029

RESUMO

This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 µm and 97.350 µm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.

7.
Bone ; 183: 117094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582289

RESUMO

The present study aimed to establish and evaluate a preclinical model of steroid-associated osteonecrosis (SAON) in mice. Sixteen 24-week-old male C57BL/6 mice were used to establish SAON by two intraperitoneal injections of lipopolysaccharide (LPS), followed by three subcutaneous injections of methylprednisolone (MPS). Each injection was conducted on working day, with an interval of 24 h. Six cycles of injections were conducted. Additional twelve mice (age- and gender-matched) were used as normal controls. At 2 and 6 weeks after completing induction, bilateral femora and bilateral tibiae were collected for histological examination, micro-CT scanning, and bulk RNA sequencing. All mice were alive until sacrificed at the indicated time points. The typical SAON lesion was identified by histological evaluation at week 2 and week 6 with increased lacunae and TUNEL+ osteocytes. Micro-CT showed significant bone degeneration at week 6 in SAON model. Histology and histomorphometry showed significantly lower Runx2+ area, mineralizing surface (MS/BS), mineral apposition rate (MAR), bone formation rate (BFR/BS), type H vessels, Ki67+ (proliferating) cells, and higher marrow fat fraction, osteoclast number and TNFα+ areas in SAON group. Bulk RNA-seq revealed changed canonical signaling pathways regulating cell cycle, angiogenesis, osteogenesis, and osteoclastogenesis in the SAON group. The present study successfully established SAON in mice with a combination treatment of LPS and MPS, which could be considered a reliable and reproducible animal model to study the pathophysiology and molecular mechanism of early-stage SAON and to develop potential therapeutic approaches for the prevention and treatment of SAON.


Assuntos
Lipopolissacarídeos , Osteonecrose , Masculino , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Osteonecrose/tratamento farmacológico , Esteroides , Osteogênese , Metilprednisolona/uso terapêutico
8.
Mol Cancer Ther ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593239

RESUMO

Head and neck cancer radiotherapy often damages salivary glands and oral mucosa, severely negatively impacting patients' quality of life. The ability of FLASH- Proton Radiation therapy (F-PRT) to decrease normal tissue toxicity while maintaining tumor control compared to Standard Proton Radiation therapy (S-PRT) has been previously demonstrated for several tissues. However, its potential in ameliorating radiation-induced salivary gland dysfunction and oral mucositis and controlling orthotopic head and neck tumor growth has not been reported. The head and neck area of C57BL/6 mice was irradiated with a single dose of RT (ranging from 14-18 Gy) or a fractionated dose of 8 Gy x 3 of F-PRT (128 Gy/s) or S-PRT (0.95 Gy/s). Following irradiation, the mice were studied for radiation-induced xerostomia by measuring their salivary flow. Oral mucositis was analyzed by histopathological examination. To determine the ability of F-PRT to control orthotopic head and neck tumors, tongue tumors were generated in the mice and then irradiated with either F-PRT or S-PRT. Mice treated with either a single dose or fractionated dose of F-PRT showed significantly improved survival than those irradiated with S-PRT. F-PRT-treated mice showed improvement in their salivary flow. S-PRT-irradiated mice demonstrated increased fibrosis in their tongue epithelium. F-PRT significantly increased the overall survival of the mice with orthotopic tumors compared to the S-PRT-treated mice. The demonstration that F-PRT decreases radiation-induced normal tissue toxicity without compromising tumor control, suggests that this modality could be useful for the clinical management of head and neck cancer patients.

9.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559168

RESUMO

The bone marrow is the organ responsible for blood production. Diverse non-hematopoietic cells contribute essentially to hematopoiesis. However, these cells and their spatial organization remain largely uncharacterized as they have been technically challenging to study in humans. Here, we used fresh femoral head samples and performed single-cell RNA sequencing (scRNA-Seq) to profile 29,325 enriched non-hematopoietic bone marrow cells and discover nine transcriptionally distinct subtypes. We next employed CO-detection by inDEXing (CODEX) multiplexed imaging of 18 individuals, including both healthy and acute myeloid leukemia (AML) samples, to spatially profile over one million single cells with a novel 53-antibody panel. We discovered a relatively hyperoxygenated arterio-endosteal niche for early myelopoiesis, and an adipocytic, but not endosteal or perivascular, niche for early hematopoietic stem and progenitor cells. We used our atlas to predict cell type labels in new bone marrow images and used these predictions to uncover mesenchymal stromal cell (MSC) expansion and leukemic blast/MSC-enriched spatial neighborhoods in AML patient samples. Our work represents the first comprehensive, spatially-resolved multiomic atlas of human bone marrow and will serve as a reference for future investigation of cellular interactions that drive hematopoiesis.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38499061

RESUMO

BACKGROUND: Non-neuronal cholinergic system (NNCS) contributes to various inflammatory airway diseases. However, the role of NNCS in severe asthma (SA) remains largely unexplored. OBJECTIVE: To explore airway NNCS in SA. METHODS: In this prospective cohort study based on the Australasian Severe Asthma Network in a real-world setting, patients with SA (n=52) and non-SA (n=104) underwent clinical assessment and sputum induction. The mRNA levels of NNCS components and proinflammatory cytokines in sputum were detected using RT-qPCR, and the concentrations of acetylcholine (Ach)-related metabolites were examined using LC-MS/MS. Asthma exacerbations were prospectively investigated during the following 12 months. The association between NNCS and future asthma exacerbations was also analyzed. RESULTS: Patients with SA were less controlled and had worse airway obstruction, a lower bronchodilator response, higher doses of inhaled corticosteroids, and more add-on treatments. The sputum mRNA levels of NNCS components, such as muscarinic receptors M1R-M5R, OCT3, VACHT, and ACHE; proinflammatory cytokines; and Ach concentration in the SA group were significantly higher than those in the non-SA group. Furthermore, most NNCS components positively correlated with non-type (T) 2 inflammatory profiles, such as sputum neutrophils, IL8, and IL1B. In addition, the mRNA levels of sputum M2R, M3R, M4R, M5R, and VACHT were independently associated with an increased risk of moderate-to-severe asthma exacerbations. CONCLUSION: This study indicated that the NNCS was significantly activated in SA, leading to elevated Ach and was associated with clinical features, non-T2 inflammation, and future exacerbations of asthma, highlighting the potential role of the NNCS in the pathogenesis of SA.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38492155

RESUMO

OBJECTIVE: As important functional cells in the ovary, ovarian granulosa cells are involved in the regulation of oocyte growth and development and play an important role in the study of female fertility preservation. Based on the importance of granulosa cell functionalism, in this study, we analyzed the exosome secretion capacity of human ovarian granulosa cells (SVOG/KGN-cell line, PGC-primary cells) and the differences in their miRNA expression. METHODS: Cells were identified by hematoxylin-eosin staining (HE) and FSHR immunofluorescence staining; CCK8 and colony-forming assay were performed to compare cell proliferation capacity; exosomes were extracted and identified by ultra-high speed centrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot analysis (WB), and the expression profile of each cellular exosomal miRNA was analyzed by miRNA high-throughput sequencing. RESULTS: The proliferative abilities of the three granulosa cells differed, but all had the ability to secrete exosomes. In the exosomes of SVOG, KGN, and PGC cells, 218, 327, and 471 miRNAs were detected, respectively. When compared to the exosomal miRNAs of PGC cells, 111 miRNAs were significantly different in SVOG, and 70 miRNAs were washed two significantly different in KGN cells. These differential miRNA functions were mainly enriched in the cell cycle, cell division/differentiation, multicellular biogenesis, and protein binding. CONCLUSION: Human ovarian granulosa cells of different origins are capable of secreting exosomes, but there are still some differences in their exosomes and exosomal miRNAs, and experimental subjects should be selected rationally according to the actual situation.

12.
Anal Bioanal Chem ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520588

RESUMO

Metal-organic frameworks (MOFs), as porous materials, have great potential for exploring high-performance electrochemiluminescence (ECL) probes. However, the constrained applicability of MOFs in the realm of ECL biosensing is primarily attributed to their inadequate water stability, which consequently impairs the overall ECL efficiency. Herein, we developed a competitive ECL biosensor based on a novel tightest structural ruthenium-based organic framework emitter combining the proximity hybridization-induced catalytic hairpin assembly (CHA) strategy and the quenching effect between the Ru-MOF and ferrocene for detecting paraquat (PQ). Through a simple hydrothermal synthesis strategy, ruthenium and 2,2'-bipyrimidine (bpm) are head-to-head self-assembled to obtain a novel tightest structural Ru-MOF. Due to the metal-ligand charge-transfer (MLCT) effect between ruthenium and the bpm ligand and the connectivity between the internal chromophore units, the Ru-MOF exhibits strong ECL emissions. Meanwhile, the coordination-driven Ru-MOF utilizes strong metal-organic coordination bonds as building blocks, which effectively solves the problem of serious leakage of chromophores caused by water solubility. The sensitive analysis of PQ is realized in the range of 1 pg/mL to 1 ng/mL with a detection limit of 0.352 pg/mL. The tightest structural Ru-MOF driven by the coordination of ruthenium and bridging ligands (2,2'-bipyrimidine, bpm) provides new horizons for exploring high-performance MOF-based ECL probes for quantitative analysis of biomarkers.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38551418

RESUMO

Objective: To investigate the influence of the dyadic coping model on anxiety and depression levels and treatment compliance in glaucoma patients. Methods: According to the random number table method, 80 glaucoma patients were assigned into an observation group and a control group, with 40 cases in each group are recruited from January 2021 to February 2022. Both groups received routine preoperative glaucoma care; in addition, the observation group received a 10-week dyadic coping model intervention. The dyadic coping model is a therapeutic approach that involves the collaborative efforts of both patients and their close partners or caregivers to cope with stressors and challenges related to the perioperative period. The baseline data questionnaires were collected before the intervention, and the outcome was evaluated 10 weeks later using the Anxiety and Depression Self-Rating Scale and the Treatment Compliance Scale. Results: After intervention, the treatment compliance of glaucoma in the observation group was significantly better than that in the control group, and the anxiety and depression level in the observation group was significantly lower than that in the control group (P < .05). Conclusion: The dyadic coping model intervention for glaucoma patients can successfully increase treatment compliance and lower anxiety and depression levels.

15.
J Bone Miner Res ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38477740

RESUMO

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.

16.
Hum Vaccin Immunother ; 20(1): 2323861, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38497584

RESUMO

Immunotherapy, particularly immune checkpoint inhibitor (ICIs) therapy, stands as an innovative therapeutic approach currently garnering substantial attention in cancer treatment. It has become a focal point of numerous studies, showcasing significant potential in treating malignancies, including lung cancer and melanoma. The objective of this research is to analyze publications regarding immunotherapy for colorectal cancer (CRC), investigating their attributes and identifying the current areas of interest and cutting-edge advancements. We took into account the publications from 2002 to 2022 included in the Web of Science Core Collection. Bibliometric analysis and visualization were conducted using CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel. The quantity of publications associated with this domain has been steadily rising over the years, encompassing 3753 articles and 1498 reviews originating from 573 countries and regions, involving 19,166 institutions, 1011 journals, and 32,301 authors. In this field, China, the United States, and Italy are the main countries that come forward for publishing. The journal with the greatest impact factor is CA-A Cancer Journal for Clinicians. Romain Cohen leads in the number of publications, while Le Dt stands out as the most influential author. The immune microenvironment and immune infiltration are emerging as key hotspots and future research directions in this domain. This research carries out an extensive bibliometric examination of immunotherapy for colorectal cancer, aiding researchers in understanding current focal points, investigating possible avenues for research, and recognizing forthcoming development trends.


Assuntos
Neoplasias Colorretais , Imunoterapia , Humanos , Bibliometria , China , Inibidores de Checkpoint Imunológico , Neoplasias Colorretais/terapia , Microambiente Tumoral
17.
Aging Cell ; : e14156, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532712

RESUMO

Neuromuscular junction (NMJ) degeneration is one of pathological factors of sarcopenia. Low-magnitude high-frequency vibration (LMHFV) was reported effective in alleviating the sarcopenia progress. However, no previous study has investigated treatment effects of LMHFV targeting NMJ degeneration in sarcopenia. We first compared morphological differences of NMJ between sarcopenic and non-sarcopenic subjects, as well as young and old C57BL/6 mice. We then systematically characterized the age-related degeneration of NMJ in SAMP8 against its control strain, SAMR1 mice, from 3 to 12 months old. We also investigated effects of LMHFV in SAMP8 on the maintenance of NMJ during the onset of sarcopenia with respect to the Agrin-LRP4-MuSK-Dok7 pathway and investigated the mechanism related to ERK1/2 signaling. We observed sarcopenic/old NMJ presented increased acetylcholine receptors (AChRs) cluster fragmentation and discontinuity than non-sarcopenic/young NMJ. In SAMP8, NMJ degeneration (morphologically at 6 months and functionally at 8 months) was observed associated with the sarcopenia onset (10 months). SAMR1 showed improved NMJ morphology and function compared with SAMP8 at 10 months. Skeletal muscle performance was improved at Month 4 post-LMHFV treatment. Vibration group presented improved NMJ function at Months 2 and 6 posttreatment, accompanied with alleviated morphological degeneration at Month 4 posttreatment. LMHFV increased Dok7 expression at Month 4 posttreatment. In vitro, LMHFV could promote AChRs clustering in myotubes by increasing Dok7 expression through suppressing ERK1/2 phosphorylation. In conclusion, NMJ degeneration was observed associated with the sarcopenia onset in SAMP8. LMHFV may attenuate NMJ degeneration and sarcopenia progression by increasing Dok7 expression through suppressing ERK1/2 phosphorylation.

18.
Heliyon ; 10(5): e27082, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455561

RESUMO

Introduction: Innate and acquired chemoresistance in colorectal cancer (CRC) often results in 5-fluorouracil (5-FU) treatment failure. This study aimed to investigate the potential of Jianpi Jiedu (JPJD) decoction to reverse 5-FU resistance in CRC and clarify its potential mechanism of action. Methods: The CCK-8 assay was employed to assess cell activity. Flow cytometry was employed to assess various parameters including cell apoptosis, cell cycle distribution, P-glycoprotein (P-gp) activity, reactive oxygen species levels, and lipid peroxidation. Metabolomics analysis was conducted to identify differentially expressed metabolites. Western blotting was utilized for protein expression analysis. Results: In this study, we demonstrated that the combined JPJD and 5-FU treatment reversed 5-FU resistance in HCT8/5-FU cells, inducing cell apoptosis, causing G2/M-phase cell cycle arrest, and reducing P-gp protein expression and activity. Metabolomics analysis revealed ferroptosis as a key pathway in the development of 5-FU resistance. Furthermore, the combination treatment reversed drug resistance primarily by impacting ferroptosis and triggering critical ferroptosis events through the suppression of the cystine/glutamate transporter (xCT)/glutathione (GSH)/glutathione peroxidase (GPX4) axis. Conclusion: JPJD decoction primarily suppressed the xCT/GSH/GPX4 axis to trigger ferroptosis, thereby effectively reversing 5-FU resistance in colorectal cancer (CRC).

20.
J Clin Invest ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512413

RESUMO

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remains unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status, notably, obstructed fatty acid transportation, was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of Bmp2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...